
Patrick Miller
Center for Applied Scientific Computing

The Conference on High Speed Computing, Salishan Lodge

Gleneden Beach, OR, April, 2002

April 23, 2002

Maintaining Efficiency and Scalability in
a Wildly Extensible Physics Simulation

Code

Work performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract W-7405-Eng-48

PJM 2CASC

Work performed under the auspices of the U. S. Department of Energy by Lawrence
Livermore National Laboratory under Contract W-7405-Eng-48

UCRL-PRES-xxxxxx

PJM 3CASC

Abstract
In a research context, the context of parallel studies and the key to its acceptance is the
efficiency and scalability of the algorithms involved. This forward looking nature of
research is to prepare for truly massively parallel machines of tens of thousands of
processors. Production applications, on the other hand are more focused on the "now" or
the near future. The concern of the "apps" developer is to improve usability through both
performance enhancements and capability enhancements. Performance enhancements
are challenging in this environment because an apps code is alive and constantly
changing. Typically apps codes are developed by larger teams making it still more
difficult to apply performance enhancements. The teams typically are cross-disciplinary,
so responsibility and the knowledge necessary for code changes may be diffused across
individuals or disciplines!

Here, we will examine a modern code system designed to be modular, extensible, and
long-lived. The system is dynamically driven by a top-level interpreter, so even the
component composition isn't necessarily known by runtime. Despite these drawbacks,
efficiency and scalability are still crucial to massively parallel performance. We will
show the systems engineering approach that led to the structure of the code, its
simplifying assumptions, and the costs and the limits these choices imply. We will close
with some ideas for possible
future directions.

PJM 4CASC

Overview

! What is a “Wildly Extensible Code”
—Characteristics

! How is that different from a “Research Kernel” or
“Parallel Component.”

! Why scaling and efficiency aren’t problematic
—Scary things that didn’t come to pass

! Why scaling and efficiency are problematic
—Scary things that are likely to come to pass

! What the future holds

PJM 5CASC

Characterization of our “Wildly Extensible
Code”

! Focus on capability and time to solution
! Use of “modern” languages
! High levels of abstraction
! Heavy reliance on 3rd party libraries
! Modular or component-wise construction
! Constant integration of new modules/packages

PJM 6CASC

! Human cost drives many decisions
—Maintenance cost
—Training cost
—Recruiting cost

! Big, inter-disciplinary team
! “Lives” together
! Widely varying levels of programming expertise

—Multiple focus, multiple jobs
—Reliance on in-house training and “new” grads
—1st or 2nd job for most team members

The W.E.C. team

PJM 7CASC

My apps-centric view of a parallel
research kernel

! Small development team
—Parallelism & speedup is the goal
—Deep knowledge of parallel tools
—High expertise
—Years of experience
—Multiple applications

! Shared deep knowledge of internal data and flow of
control

! Single, clean abstraction
! Tight control of the problem, execution parameters,

and environment

PJM 8CASC

How do “Research Kernels” and “Parallel
Components” differ from a W.E.C

! Freedom to experiment with implementation
—Rebuild from scratch IS an option

! Consequences of radical change are less dramatic
! Shorter time frames
! Often, research sets direction and focus
! Typically “lives” outside the code team
! Components are less interwoven

PJM 9CASC

A Concrete Example: The KULL project

! Joint A/X Division ICF code
! Mostly C++ with Python, F77, F90, a bit of C
! Framework is a Python interpretive shell
! 32+ full- and part-time developers
! About 700 classes & 7000 function points
! 1600 files
! 450,000 lines of code

PJM 10CASC

! 32 core files contain MPI calls
! Only 28 unique MPI calls and 28 unique

parameters
! 12 C++ OMP pragmas, 24 in FORTRAN

—OMP restrictions disallow the use of
iterators

Small Parallel footprint

PJM 11CASC

MPI symbols in KUILL

! MPI_2DOUBLE_PRECISION, MPI_ALLGATHER,
MPI_ALLREDUCE ,MPI_ALLTOALL, MPI_Allreduce, MPI_Barrier,
MPI_Bcast, MPI_CHAR, MPI_COMM_WORLD, MPI_Comm,
MPI_Comm_dup, MPI_Comm_rank, MPI_Comm_size,
MPI_DOUBLE, MPI_Datatype, MPI_ERRORS_RETURN,
MPI_Errhandler_set, MPI_Error_string, MPI_Finalize,
MPI_Get_count, MPI_INT, MPI_INTEGER, MPI_Init, MPI_Irecv,
MPI_Isend, MPI_MAX, MPI_MAXLOC,
MPI_MAX_ERROR_STRING, MPI_MIN, MPI_MINLOC, MPI_Op,
MPI_PACKED, MPI_PROD, MPI_Pack, MPI_Pack_size,
MPI_REAL8, MPI_RECV, MPI_REQUEST_NULL, MPI_Recv,
MPI_Request, MPI_Request_free, MPI_SEND,
MPI_STATUS_SIZE, MPI_SUCCESS, MPI_SUM, MPI_Scan,
MPI_Send, MPI_Status, MPI_Type_commit,
MPI_Type_contiguous, MPI_Type_free, MPI_Unpack, MPI_Wait,
MPI_Waitall, MPI_Wtick, MPI_Wtime

PJM 12CASC

The IDEAL big picture

Serial, local
physics

Field Exchange

Serial, local
physics

Serial, local
physics

Serial, local
physics

Serial, local
physics

Local Data MotionLocal Data MotionLocal Data MotionLocal Data MotionLocal Data Motion

Timestep
selection

Timestep
selection

Timestep
selection

Time step
selection

Global reduction

PJM 13CASC

This looks great!

! Local physics and operator splitting are our friends!
! Logical extension of serial implementation
! Most communication operations are point-to-point
! Computation costs dwarf global reduction cost
! Load imbalance is a bigger issue than the global

reduction
! Everything scales, serial run efficiency is the only real

bottleneck, life is beautiful, buy me a bigger machine
that looks exactly like the one I have now except
faster!

PJM 14CASC

Oops

! What about other intra-package parallelism
— Improvements in solver technology have masked

scaling issue in Diffusion solve
—Particle methods use a vastly different idea of

exchange
—3rd party libraries use internal parallelism as well
— Internally generated edits & debug information are

often parallel aware
! Serial-first design led to…..

—Very little overlap in communication and
computation

—Over use of synchronization

PJM 15CASC

Oops(2)

! Needed a change in philosophy
— I can run bigger in the same time, but not

necessarily the same problem faster
! Assumes a simplifying, uniform view of

—Memory
—Communications
— I/O
—Operating system

! Trusts that the component composition is simply the
“sum of the parts.”

PJM 16CASC

The two-edged sword of abstraction

! Abstraction costs…
—Optimization
—Low-level control of memory allocation
—Data privacy interferes with layout
— Iterators are NOT pointers

! Abstraction gains…
—Control hooks
—Validity check hook
—Type safety
— Intelligent pre-compilers

PJM 17CASC

Many types, many function points

! 700 classes (C++ and Python)
! 7000 function points
! Over 85% are 32 lines or less

PJM 18CASC

Why scaling and efficiency aren’t
problematic

! Current runtime to communication ratios do or can
provide reasonable balance

! Parallel architecture is rather stable across a wide
range of platforms

! Pure MPI decomposition has proven workable
—For much of the code, threads are used because

of system MPI limitations
! Simple parallel regions

—Simplifies sequential implementation
—Speeds package integration
—Cuts developer training

PJM 19CASC

Why scaling and efficiency are
problematic

! Upcoming changes to machine architectures
—E.g. BGL

! NUMA (memory, messaging, I/O)
! Need to program to the MPI/Threads “sweet spot”

—Achieving good surface-to-volume ratios
! Better handle on partitioning and dynamic load

balance

PJM 20CASC

What the future holds

! Moving edits into Python and out of core code
—Role of pyMPI

! Integrating better tools into the framework
—Parallelism integrated into basic mesh and field

structures
—A start on a shared particle framework

! M-N way parallelism to cut diameter of global
messaging where possible

PJM 21CASC

EOF

